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Abstract: It is well established now that the solar atmosphere, from photosphere to the corona and the 

solar wind is a highly structured medium. Satellite observations have confirmed the presence of steady flows 
there. Here, we investigate the propagation of magnetohydrodinamic (MHD) surface waves travelling along an 
ideal incompressible flowing plasma cylinder (flux tube) surrounded by flowing plasma environment in the 
framework of the Hall magnetohydrodynamics. The waves’ propagation characteristics are studied in a reference 
frame moving with the mass flow outside the tube. In general, flows change waves’ phase velocities compared to 
their magnitudes in a static MHD flux tube and the Hall effect extends the number of the possible wave dispersion 
curves. It turns out that while the kink waves in the framework of the standard magnetohydrodynamics are 
unstable against the Kelvin–Helmholtz instability, they become stable when the Hall effect is taken into account.  
The sausage waves are stable in both considerations.  
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на слънчевия вятър  

 
Резюме: Установено е, че слънчевата атмосфера, от фотосферата до короната и 

слънчевия вятър, е силно структурирана среда.  Спътникови наблюдения потвърдиха наличието на 
стационарни потоци в нея.  Тук изследваме разпространението на магнитохидродинамични (МХД) 
повърхнинни вълни, разпространяващи се в идеален несвиваем течащ плазмен цилиндър (магнитна 
тръба), обграден от течаща плазмена среда, в рамките на Холовата магнитохидродинамика.  
Дисперсионните характеристики на вълните са изучавани в отправна система, движеща се с масовия 
поток извън тръбата.  Потоците променят фазовите скорости на вълните в сравнение с техните 
големини в неподвижна МХД магнитна тръба, а ефектът на Хол увеличава броя на възможните 
дисперсионни криви на вълните.  Оказва се, че докато kink-вълните, в рамките на стандартната 
магнитохидродинамика, са неустойчиви и неустойчивостта е от вида на Келвин–Хелмхолц, те ста-
ват устойчиви, когато се отчита влиянието на ефекта на Хол.  Другите характерни МХД вълни – 
sausage-вълните – са устойчиви в рамките на двете описания.   

 
 
Introduction 
 

Various waves and oscillations which occur in structured solar atmosphere were intensively 
studied over the past three decades [1].  Next step in investigating the wave phenomena in solar and 
stellar atmospheres was the consideration of steady flows there.  Satellite measurements performed 
by SOHO, Ulysses, Yohkoh, Wind, ACE, and more recently by STEREO, of plasma characteristics of, 
for instance, the solar wind and coronal plumes flows, such as the magnetic field, the thermal and flow 
velocity and density of plasma or plasma compositions, are important to understand the various 
plasma wave modes which may arise. However, wave analysis requires further information and 
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special tools to identify which set of modes is contributing to observed wave features.  In practice, one 
may use filters to perform the so-called pattern recognition to detect the various kind of modes that 
may propagate in plasma and to determine their contribution to the wave energy [2]. Another important 
issue is the question for the waves’ stability.  The magnetosonic waves in structured atmospheres with 
steady flows have been examined by Nakariakov and Roberts [3], Nakariakov et al. [4], Andries and 
Goossens [5].  Andries and Goossens studied also the conditions at which resonant flow and Kelvin–
Helmholtz instability take place. 

It is worth pointing out that all the aforementioned studies were performed in the framework of 
the standard magnetohydrodynamics.  It was Lighthill [6] who pointed out 50 years ago that for an 
adequate description of wave phenomena in fusion and astrophysical plasmas one has to include the 
Hall term, mi(j × B)/eρ, in the generalized Ohm’s law.  That approach is termed Hall magnetohydro-
dynamics (Hall MHD).  In this way, it is possible to describe waves with frequencies up to ω ≈ ωci. 
Because the model still neglects the electron mass, it is limited to frequencies well below the lower 
hybrid frequency: ω << ωlh.  Generally speaking, the theory of Hall MHD is relevant to plasma 
dynamics occurring on length scales shorter than an ion inertial length, L < lHall = c/ωpi (where c is the 
speed of light and ωpi is the ion plasma frequency), and time scales of the order or shorter than the ion 
cyclotron period (t < 1/ωci) [7].  Thus the Hall MHD should affect the dispersion characteristics of the 
MHD waves in spatially bounded magnetized plasmas.  An extensive review for the studies of waves’ 
propagation in bounded MHD plasmas in the framework of both the standard and Hall magnetohydro-
dynamics the reader can find in Ref. [8]. 

Here, we investigate the influence of flow velocities on the dispersion characteristics and 
stability of hydromagnetic surface waves (sausage and kink modes) travelling along an infinitely 
conducting, magnetized jet moving past also (with a different speed) infinitely conducting, magnetized 
plasma.  If in the solar corona plasma β (the ratio of gas to magnetic pressure) is much less than unity, 
in the solar-wind fluxes tubes it is β ≈ 1.  Since we are going to study the wave propagation in flowing 
solar-wind plasma, we can assume that we have a ‘high-β’ magnetized plasma and treat it as an 
incompressible fluid. 

 

 
 

Fig. 1: Geometry of a solar wind flux tube containing flowing plasma. 
 
 For simplicity, we consider a cylindrical jet of radius a (immersed together with the environ-
ment in a constant magnetic field B0 directed along the z-axis), allowing for different plasma densities 
within and outside the jet, ρo and ρe, respectively (Fig. 1).  The most natural discontinuity which occurs 
at the surface bounding the cylinder is the tangential one because it is the discontinuity that ensures a 
static pressure balance.  For typical values of the background constant magnetic field B0 = 5 × 10−9

 T 
and the electron number density inside the jet no = 2.43 × 106 m−3

 at 1 AU, the ion cyclotron frequency 
ωci/2π = 76 mHz, the Alfvén speed vAo = 70 km/s, and the Hall scale length (= vAo/ωci, which is 
equivalent to c/ωpi) is lHall ≈ 150 km.  This scale length is small, but not negligible compared to tube’s 
radius of a few hundred kilometers. Here, we introduce a scale parameter ε = lHall/a called the Hall 
parameter.  In the limit of ε → 0, the Hall-MHD system reduces to the conventional MHD system.  Our 
choice for that parameter is ε = 0.4. The flow speeds of the jet and its environment are generally rather 
irregular. For investigating the stability of the travelling MHD waves it is convenient to consider the 
wave propagation in a frame of reference attached to the flowing environment.  Thus we can define 
the relative flow velocity Urel = Uo − Ue (Uo and Ue being the steady flow speeds correspondingly inside 
and outside the flux tube) as an entry parameter whose value determines the stability/instability status 
of the jet.  As usual, we normalize that relative flow velocity with respect to the Alfvén speed in the jet, 
vAo = B0/(μ0ρo)1/2, and call it Alfvénic Mach number MA, omitting for simplicity the superscript “rel”.  
Another important entry parameter of the problem is η = ρe/ρo.  It turns out that the waves’ dispersion 
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characteristics and their stability critically depend on the magnitude of η.  In this study, we take η = 
0.568 which, for a compressible plasma approach, would correspond to vAo = cso = 70 km/s and vAe = 
100 km/s, cse = 70 km/s, respectively, where cs is the sound speed in the corresponding medium.  
Thus the waves’ dispersion characteristics (the dependence of the wave phase velocity vph = ω/kz on 
the wave number kz) and their stability states are determined by the three parameters η, ε, and MA, 
two of which are fixed (η and ε) and the third one, MA, is running. 
 

Basic equations and dispersion relations 
 

As seen in Fig.1, the three important vectors, the embedded magnetic field B0, the relative 
flow velocity U, and the wave vector k, lie along the z-axis.  The basic equations which govern the 
propagation of Hall-MHD waves in flowing incompressible plasma are the equations for the perturbed 
fluid velocity v1 and perturbed wave magnetic field B1:  

(1) ρ∂v1/∂t + ρ( U ●∇ )v1 + ∇ (B0 ● B1)/μ0 + ( B0 
●∇ )B1/μ0 = 0, 

(2) ∂B1/∂t + ( U ●∇ )B1 − ( B0
 ● )v1 + B0∇ ∇ ● v1 + vA

2( z ●∇ )∇ × B1/ωci = 0, 

with the constrains 

(3) ● v1 = 0  and  ∇ ● B1 = 0, ∇

where z is the unit vector of the z-axis; the other notation is standard. After Fourier transforming the 
perturbed quantities proportional to g(r)exp(−iωt + imφ + ikzz), we get a second order differential 
equation for the perturbed magnetic pressure p1mag:  
(4) [d2/dr2 + (1/r)d/dr – (kz

2 + m2/r2)]B0B1z/μ0 = 0, 
as well as an expression for the perturbed radial fluid velocity component in terms of the first derivative 
of p1mag  
(5) v1r = −i μ0F(dp1mag/dr)/(B0kz)2, 
where 
 F = [(ω − k ● U)(C − 1)]/[(C − 1)2 − σ2] 
with 

 C = [(ω − k ● U)/(kzvA)]2          and          σ = (ω − k ● U)/ωci.  

It is worth noticing that we have different Cs and σs inside and outside the jet. 
 The solutions to the differential equation (5) are the modified Bessel functions, more speci-
fically 
 p1mag(r) = AIm(kzr) for r < a 
and 
 p1mag(r) = BKm(kzr) for r > a. 

Accordingly, the expressions for v1r inside and outside the jet are: 

 v1r(r < a) = −iμ0FoAIm′(kzr)/(B0kz)2 
and 
 v1r(r > a) = −iμ0FeBKm′(kzr)/(B0kz)2, 
where 
 Fo = [(ω − k ● U)(Co − 1)]/[(Co − 1)2 − σo

2]        and        Fe = ω(Ce − 1)/[(Ce − 1)2 − σe
2] 

with 
 Co = [(ω − k ● U)/(kzvAo)]2,   Ce = ω2/(kzvAe) 2,   σo = (ω − k ● U)/ωci,   and   σe = ω/ωci. 

 For solving our problem we need two boundary conditions, applied at the r = a interface. 
These boundary conditions are [9]: 

• continuity of the perturbed interface v1r/(ω − k ● U), 

• continuity of the perturbed magnetic pressure p1mag.  

The application of the boundary conditions yields the following dispersion relations for sausage (m = 0) 
and kink (m = 1) modes running along the jet’s interface: 

(6) GoIm′(kza)/Im(kza) − GeKm′(kza)/Km(kza) = 0, 

where 

 Go = (Co − 1)/[(Co − 1)2 − σo
2]        and        Ge = (Ce − 1)/[(Ce − 1)2 − σe

2]. 
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As seen, the wave frequency ω is Doppler-shifted inside the jet, and also the two modes are pure 
surface waves.  If we ignore the Hall term (σo,e = 0), the above equation reduces to [3]: 

(7) η(ω2 − kz
2vAe

2)Im′(kza)/Im(kza) − [(ω − k ● U)2 – kz
2vAo

2]Km′(kza)/Km(kza) = 0, 

i.e., we recover well-known dispersion relations. 
 As we are interested in the stability of the surface waves travelling along the jet interface, we 
have to assume that the wave frequency is complex, i.e., ω → ω + iγ, where γ is the expected 
instability growth rate. Since we will plot dispersion diagrams as dependencies of the wave phase 
velocity vph on the wave number kz, we normalize all quantities by defining the dimensionless wave 
phase velocity Vph = ω/kzvAo, wave number K = kza, and the relative Alfvénic Mach number MA = U/vAo 
to get the dimensionless form of our dispersion relations.  It is worth investigating in parallel both 
waves’ dispersion relations (those in the framework of the conventional magnetohydrodynamics and 
the Hall-MHD waves) in order to see how the Hall term modifies waves’ dispersion curves and the 
instability growth rates when the waves become unstable.  Thus the dimensionless forms of the 
aforementioned dispersion relations are: 

(8) [(Vph − MA)2 − 1]Z2Im′(K)/Im(K) − (ηVph
2 − 1)Z1Km′(K)/Km(K) = 0, 

where 

 Z1 = [(Vph − MA)2 − 1]2 − ε2K2(Vph − MA)2, 

 Z2 = (ηVph
2 − 1)2 − ε2K2Vph

2. 

In above expressions ε = lHall/a is the Hall parameter.  The dispersion relation of the conventional 
surface MHD waves takes the form: 

(9) (ηVph
2 − 1) Im′(K)/Im(K) − [(Vph − MA)2 − 1] Km′(K)/Km(K) = 0. 

It is easy to see that the dispersion relation (9) of the conventional MHD surface waves is a quadratic 
one and its roots are: 

 Vph = (−MAB  D1/2)/(ηA − B), ±

where  

 A = Im′(K)/Im(K),  B = Km′(K)/Km(K), 

and the discriminant D is 

 D = MA
2B2 + (ηA − B)[(1 – MA

2)B − A]. 

Obviously, if D is non-negative (i.e., greater than or equal to zero), then 

 ReVph = (−MAB ±  D1/2)/(ηA − B), ImVph = 0, 

else 

 ReVph = −MAB/(ηA − B),  ImVph = D1/2/(ηA − B). 
 

Numerical results and discussion 
 

While the dispersion equation (9) of standard MHD surface waves is a quadratic one and its 
roots can be expressed in closed forms, that of the Hall-MHD waves, Eq. (8), is a complex polynomial 
of sixth order and it can be solved only numerically.  We have used the Müller method for finding the 
complex roots of that equation.  Before starting the numerical procedure for solving either dispersion 
equation, we have to specify the jet’s entry parameters, notably η, MA, and the Hall parameter ε for the 
Hall waves. Since the dispersion relations are sensitive to the values of η, we have calculated the 
waves’ dispersion curves (and growth rates when the waves are unstable) for a value of that 
parameter which corresponds to the jet parameters listed in the Introduction section of this paper, 
namely η = 0.586. The relative Alfvénic Mach number MA is a running entry parameter whose values 
vary from zero to some reasonable numbers.  Recall that the value of the Hall parameter is ε = 0.4.  
We will first display the results for the kink mode, and later on for the sausage one.  

It is clear from the explicit solutions to the dispersion equation of the conventional kink waves 
that for each MA we have two curves when the waves are stable and only one curve as they become 
unstable.  That is seen in Figs. 2 and 3.  For relatively small Alfvénic Mach numbers one observes one 
forward and one backward propagating wave (look at Fig. 2).  For a little bit bigger MAs, say MA > 1.5, 
both waves become forward running ones and at MA = 2.35 (Fig. 3) they start to merge forming close 
dispersion curves.  At some critical value of MA, in our case at MA = 2.42, the waves become unstable  
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Fig. 2: Dispersion curves of forward and backward propagating conventional kink waves for  
different values of the relative Alfvénic Mach number MA. 

 
 

 
 

Fig. 3: Zoomed dispersion curves of forward propagating kink waves shown in Fig. 2.  
 
 

 
 

Fig. 4: Growth rates of the unstable conventional kink waves. 
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and their growth rate can be seen in Fig. 4.  The found instability is of the Kelvin–Helmholtz type and 
the growth rates for other three relative Alfvénic Mach numbers are plotted in the same figure – the 
corresponding dispersion curves are clearly depicted in Fig. 3.  We have to emphasise that according 
to Andries and Goossens [5] the Kelvin–Helmholtz instability onset starts at U > vAo + vAe, or 
equivalently at 

 MA > 1 + 1/η1/2. 

In our case (η = 0.586) above inequality requires MA > 2.31 in order to expect an instability onset.  
Obviously, our numerical calculations confirm the applicability of that criterion. 
 One must mention that one can get dispersion curves and growth rates of kink unstable waves 
for negative values of the relative Alfvénic Mach number, however, those waves are backward 
propagating ones and not acceptable from a physical point of view.  The reason for that conclusion is 
that the MHD surface waves are the incompressible vestige of the slow magnetosonic waves of the 
compressible magnetohydrodynamics which propagate with group velocity, vA, either parallel or anti-
parallel to B0 depending on the sign of kz [8]. 
 As we have already mentioned, the dispersion relations of the Hall-MHD surface waves are 
polynomials of sixth order possessing all non-zero coefficients.  That means we have to expect to get 
six different dispersion curves for each MA.   In Fig. 5 we show the dispersion curves of the kink waves 
 
 

 
 

Fig. 5: Dispersion curves of forward and backward propagating Hall-MHD kink waves for MA = 0. 
 
 

 
 

Fig. 6: Dispersion curves of the fast forward propagating Hall-MHD kink waves for different values of MA. 
 
propagating along a static (MA = 0) flux tube. It is seen that we have three forward and three backward 
waves. Considering only the forward waves one can divide them into three categories, namely fast 

 25



(super-Alfvénic) kink waves, Alfvénic kink waves, and slow (sub-Alfvénic) kink waves.  Figure 6 shows 
the evolution of the fast forward kink waves with increasing the relative Alfvénic Mach number MA. It 
turns out that all the dispersion curves correspond to stable wave propagation. The evolution of the 
Alfvénic kink waves can be seen in  Fig. 7. It is evident that in a flowing plasma their normalized  
 
 

 
 

Fig. 7: Dispersion curves of the Alfvénic forward propagating Hall-MHD kink waves for different values of MA. 
 
 

 
 

Fig. 8: Dispersion curves of the sub-Alfvénic forward propagating Hall-MHD kink waves for  
different values of MA. 

 
phase velocities increase and the waves actually become super-Alfvénic ones.  Moreover for greater 
values of MA (starting from 2.5) the form of their dispersion curves drastically changes – for small 
normalized wave numbers kza there exist regions of non-propagation and each dispersion curve con-
sists of two branches that merge at a specific kza – for example, with MA = 2.5 that value of kza is 0.78.  
All dispersion curves plotted in Fig. 7 correspond to stable wave propagation.  We observe a similar 
picture for the initially slow (sub-Alfvénic) forward Hall-MHD kink waves whose dispersion curves are 
shown in Fig. 8.  What is more interesting, with the increasing the relative Alfvénic Mach number MA 
the waves generally become super-Alfvénic (with the exception of low-branch curves corresponding to 
MA equal to 1 and 1.5) and for some values of MA (for instance at MA = 2.25) the region of wave 
propagation is extremely narrow.  The most surprising result is that for relative Alfvénic Mach numbers 
in the region of 2.4–2.6 where one may expect the onset of the Kelvin–Helmholtz instability (like in the 
case of the conventional MHD kink waves) the waves are still stable!  The Müller method which has 
been used for solving the complex dispersion equations does not yield complex roots – the imaginary 
parts of the normalized wave phase velocities always were equal to zero.  In other words, it turns out 
that the Hall term in the generalized Ohm’s law not only changes the form and numbers of the 
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dispersion curves but also stabilizes the wave propagation along the jet against the Kelvin–Helmholtz 
instability. 
 The dispersion curves of the conventional sausage MHD surface waves travelling along the jet 
have been calculated by using Eq. (9) with  m = 0   and are displayed in Figs. 9 and 10.  For fairly small  
 
 

 
 

Fig. 9: Dispersion curves of forward and backward propagating conventional sausage waves for  
different values of the relative Alfvénic Mach number MA. 

 
 

 
 

Fig. 10: Zoomed dispersion curves of forward propagating sausage waves shown in Fig. 9. 
 
relative Alfvénic Mach numbers, less than or equal to 1, we have both forward and backward 
propagating waves.  With the increasing of MA the shape of the dispersion curves changes and at MA 
= 2.5 both curves merge (look at Fig. 10) narrowing the propagation’s range of the waves.  Moreover, 
for such big enough relative Alfvénic Mach numbers for a fixed normalized wave number kza we have 
multiple (in our case two) solutions for the normalized wave’s phase velocity.  Which one of these two 
velocities will be registered during the wave propagation cannot be predicted by the theory.  It is rather 
astonishing that we get no complex solutions to the wave dispersion equation, i.e., the conventional 
sausage MHD surface waves are stable against the Kelvin–Helmholtz instability. 
 Let us see whether the inclusion of the Hall effect will change the stability state of the sausage 
mode.  In the next four figures we show the dispersion curves of the Hall-MHD sausage surface waves 
running on a solar-wind jet.  As in the case of the kink waves, for MA = 0 (propagation along a static 
flux tube) we obtain six distinct dispersion curves for the Hall-MHD sausage waves – three of them 
correspond to forward wave propagation and the next three to backward wave propagation.  When 
considering only the forward propagating modes we recognize, like before, three different types of 
waves (see Fig. 11): one fast (super-Alfvénic) wave, one practically Alfvénic wave, and one slow (sub- 
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Fig. 11: Dispersion curves of the fast forward propagating Hall-MHD sausage waves for different values of MA. 
 
 

 
 
Fig. 12: Dispersion curves of the fast forward propagating Hall-MHD kink waves for different values of MA. 
 
 

 
 

Fig. 13: Dispersion curves of the Alfvénic forward propagating Hall-MHD sausage waves for 
different values of MA. 

 28



Alfvénic) wave. While the evolution of the fast Hall-MHD sausage waves with the inclusion of flow is 
similar to that of the kink waves (compare Figs. 6 and 12), the evolution of the initially almost Alfvénic 
sausage waves is completely different (compare Figs. 7 and 13).  It is seen in Fig. 13 that those waves 
quickly become super-Alfvénic and only at great enough relative Alfvénic Mach numbers their 
propagation’s ranges are severely reduced – look, for example, at the curve labeled by 3 in Fig. 13.  
Figure 14 shows the dispersion curves of Hall-MHD sausage waves for various relative Alfvénic Mach 
 
 

 
 

Fig. 14: Dispersion curves of the sub-Alfvénic forward propagating Hall-MHD sausage waves for  
different values of MA. 

 
numbers. It is seen, like in the case of the kink Hall-MHD waves, that the sausage waves possess 
semi-closed dispersion curves which significantly narrow the propagation’s range of the waves – look, 
for instance, at the curve labelled by 2.25 in Fig. 14.  Here, however, we observe a notable peculiarity: 
for MA = 2.5 and 2.75 in the same range of the normalized waves’ phase velocities there appear two 
dispersion curves (see the curves labelled by 2.5 and 2.75 on the right side of the plot in Fig. 14), 
which initially (for zero or small relative Alfvénic Mach numbers) belong to backward propagating Hall-
MHD sausage waves. Probably it is not too surprising now to say that the sausage Hall-MHD waves, 
similarly to the conventional ones, are stable against the Kelvin–Helmholtz instability.  Their stability 
state is not changed for negative MAs, either.  In that case, however, there occur fast sausage waves 
whose normalized phase velocities are smaller than those of the super-Alfvénic waves for positive 
values of the relative Alfvénic Mach numbers. Similar phenomenon takes place for the kink Hall-MHD 
waves, too. 
 As we have mentioned in the Introduction section, the dispersion characteristics of both con-
ventional and Hall-MHD waves depend upon the value of the entry parameter η.  We have performed 
calculations for a wide range of magnitudes of that important parameter, namely η = 0.16, 0.98, 4, 10, 
and, of course, for η = 0.586. The obtained dispersion diagrams really looked differently, but their 
general features for a given eigenmode are more or less rather similar. 

 
Conclusion and outlook 

 

Let us summarize the main findings of our study.  In investigating the wave propagation along 
an incompressible plasma jet moving with respect to the environment with a constant speed U we had 
to take into account the influence of two factors: (i) the Hall term in the generalized Ohm’s law, and (ii) 
the flow itself.  The combining effect of these two factors can be expressed as follows: 

• The Hall term generally expands the range of propagation of the wave modes not only for 
static tubes but also for jets with MA ≠ 0.  While the number of dispersion curves of a convent-
ional MHD surface mode for a fixed MA is two (one for forward propagating waves and other 
for backward propagating waves), for a Hall-MHD surface mode that number is six – we have 
generally three forward travelling waves and three backward running ones. 

• With increasing the relative Alfvénic Mach number, MA, at some its critical value the convent-
ional kink waves become unstable and the instability is of the Kelvin–Helmholtz type.  It turns 
out, however, that the kink Hall-MHD waves are stable for any relative Alfvénic Mach number 
(be it positive or negative). 
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• The sausage surface waves are stable against the Kelvin–Helmholtz instability for any relative 
Alfvénic Mach number both in the framework of the standard magnetohydrodynamics and the 
Hall one. 

• The Hall term in the generalized Ohm’s law, except of extending the number of the possible 
dispersion curves, also dramatically changes the shapes of the curves corresponding in the 
limit MA → 0 to slow (sub-Alfvénic) and almost Alfvénic waves.  In particular, for big enough 
MAs their ranges of propagation are narrowed and for a fixed normalized wave number K = 
kza one may have two distinctly different normalized phase velocities. 
It is interesting and very instructive to compare our results with those associated with the 

propagation of Hall-MHD waves in a flowing incompressible plasma slab along the constant external 
magnetic field B0 [8].  In the slab geometry the Hall term generally limits the range of propagation of 
the wave modes not only for static tubes/layers but also for jets possessing positive Alfvénic Mach 
numbers.  The limiting normalized wave number (see Eq. (18) in Ref. [8]) 

Klimit = (1 + η)1/2/ε 

is specified by two plasma parameters: the densities ratio of the two plasma media (outside and inside 
the jet), η, and the Hall parameter, ε. With approaching that wave number the wave phase velocity 
becomes very high.  When MA is negative the real part of the phase velocity of the eigenmodes (kink 
and sausage waves) is forced due to the flow’s presence to go beyond that limiting wave number in a 
region where the wave becomes unstable (or if you prefer, overstable). The instability which occurs is 
of the Kelvin–Helmholtz type.  The main conclusion in Ref. [8] is that the Hall current keeps stable the 
surface modes travelling in flowing solar plasmas within the dimensionless wave number range 
between 0 and Klimit for each relative Alfvénic Mach number.  Instability of the Kelvin-Helmholtz type 
for the forward propagating waves is possible only at negative Alfvénic Mach numbers in a wave 
number range lying beyond the Klimit. The instability can disappear as |MA| reaches some value 
depending on the magnitude of the parameter η (look at Figs. 12 and 13 and read the comments for 
them in Ref. [8]).  One of the unexpected surprises of our study in cylindrical geometry was that we did 
not get such a Klimit. Hence, if we extrapolate the main conclusion of Ref. [8], we can claim that the 
Hall-MHD surface waves propagating along a cylindrical incompressible solar-wind plasma jet should 
be stable against the Kelvin–Helmholtz instability. It remains to be seen whether this statement will be 
valid when the plasma compressibility is taken into account. An examination of the dispersion 
characteristics of the Hall-MHD eigenmodes and their stability status in a compressible cylindrical 
solar-wind jet are in progress and will be reported elsewhere. 
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